
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 47:1027–1034
Published online 27 January 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.883

Adjoint sensitivity analysis for �uid �ow with free surface
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SUMMARY

This paper develops the adjoint sensitivities to the free surface incompressible barotropic Euler equations
in order to allow for the assimilation of measurements of currents and free surface elevations into an
unsteady �ow solution by boundary control. To calculate a variation in a surface variable, a mapping
is used in the vertical to shift the problem into a �xed domain. Then a variation is evaluated from the
Jacobian matrix of the mapping. After calculating a variation in the surface variable and applying the
inverse transformation, the tangent linear model is considered in the original space where the adjoint
equations are then derived. The method is demonstrated by application to an unsteady �ow in an open
channel (a 2D vertical section model). A wider application is to the construction of a fully three-
dimensional coastal ocean model that allows assimilation of tidal elevation and current data. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The simulation of water circulation in coastal areas requires the application of either two-
dimensional (2D) or three-dimensional (3D) computer �ow models. These models calculate
solutions for either the 2D shallow water equations (SWE) or for the fully 3D non-hydrostatic
free surface Navier–Stokes equation (fsNS) in original formulation [1], or in terrain following
co-ordinates [2]. All of these calculations require that the solution is driven by an unsteady
in�ow Dirichlet boundary condition. This condition is not generally known accurately enough
and has to be adjusted using the measured data available at scattered locations within the
model domain, obtained by current metres and tide gauges, for example. The process of
adjustment can be systematized by calculating appropriate sensitivities to guide a gradient
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descent algorithm. The adjoint sensitivity analysis has been performed for SWE [3], depth-
integrated tidal models and for potential �ow. Adjoint models developed for oceanographic
(deep water) applications, see for example Reference [4], do not determine sensitivities to
variations in the free surface and therefore cannot directly assimilate water elevation data
(although it can be achieved by introducing the measured geopotential surface). This paper
presents the adjoint formulation of the non-hydrostatic barotropic free surface Euler equations
(fsE) in 2D vertical section. The method is general and can be extended to the 3D fsNS. The
novelty of this work is in the complete treatment of the free surface in the adjoint problem.
This is probably the �rst fsE adjoint model that is free from the hydrostatic assumption in
any form and can be used for short waves and in the case of very sharp bed changes.

2. MODEL PROBLEM

Let us consider a 2D free surface inviscid �ow in a channel, where the x-axis is directed along
the channel, and the y-axis—from the channel bed to the surface. Velocities u= u(x; y; t) and
v= v(x; y; t) are associated to x- and y-axes, respectively. The governing equations are as
follows:

St + u(x; S(x; t); t)Sx − v(x; S(x; t); t)=0 (1)

ux + vy=0 (2)

ut + uux + vuy + px=0 (3)

vt + uvx + vvy + py + g=0 (4)

x∈ (0; L); y∈ (f(x); S(x; t)); t ∈ (0; T ))
where S(x; t) is the elevation function describing a free surface, f(x) is the channel bed shape
function, such that f(0)=0, p is the relative pressure, p=(p− p∞)=�, p∞ is the pressure
at in�nity, �=const is density. Let us denote as Ŝk =: Ŝ(xk ; t) elevation measurements given
at some points xk ∈ (0; L); and as ûl;m=: û(xl; Ym; t)—u-velocity measurements at some points
xl ∈ (0; L) along the trajectories Ym=:Ym(xl; t)∈ (f(x); S(x; t)). We will use boundary control
to assimilate the data given by considering the objective functional

J =
1
2
∑
k

∫ T

0
(S(xk ; t)− Ŝk)2 dt + 12

∑
l

∑
m

∫ T

0
(u(xl; Ym(xl; t))− ûl;m)2 dt (5)

The initial state is assumed to be known and we will consider it, for simplicity, as trivial

S(x; 0)=Z; u(x; y; 0)=0; v(x; y; 0)=0

The open control boundary is assumed at x=0, and the passive boundary at x=L. An open
boundary is usually introduced when we consider �ow in a �nite region that is a part of a
global �ow. Thus, the perfect open boundary condition has to emulate the same �ow behaviour
within the model domain as if the global model was covered in its entirety. Particularly, it
must allow the waves originated within the model domain to pass unhampered through it
without re�ection. Therefore, Dirichlet condition at the open boundary prescribes an incident
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component of state variables that is associated with the incoming characteristics. We use a
simple numerical approach described in Reference [5] to distinguish between the incident and
re�ected parts of the solution. This approach is valid for long-wave cases, assuming there is
a pure wave motion at the boundary. We shall denote incident components by the subscript
→, in order to show that they are driving conditions originated from the exterior x∈ (−∞; 0]
directed towards the interior. It can be shown that if we assume Sx(0; t)=0, then the only
control variable to be found at the control boundary is

u→(0; y; t); y∈ (0; S(0; t))
For the re�ected component u←(0; y; t)= u(0; y; t)− u→(0; y; t); y∈ (0; S(0; t)) we use the ra-
diation boundary. By radiation boundary, we mean Sommerfeld condition applied to the out-
going component of u (or u∗) assuming zero surface slope Sx=0 (or S∗x =0). For the passive
boundary x=L, we use radiation boundary. For the channel bed, we consider the free slip
condition, i.e.

u(x; f; t)fx − v(x; f; t)=0
and for the free surface, we have the dynamic condition

p(x; S(x; t); t)=0

We should mention the two assumptions about the surface that are made in the given
formulation. The �rst one is that the free surface can be uniquely described by the graph of
S(x; t). Thus, the model cannot cope with such phenomena as breaking waves, for example.
Secondly, we use a simpli�ed form of the surface boundary condition neglecting the surface
tension.
The main di�culty with the problem of interest consists in deriving the variation in the

surface variable S(x; t). A classical procedure is that the variation in a certain dependent
variable is calculated assuming all the other dependent variables are simply functions of
space and time. Thus, we face a contradiction: in order to calculate the variation in S(x; t),
it must be �xed (so as to de�ne u(x; y; t); v(x; y; t); y∈f; S). A similar di�culty is that
the value of the control variable, which is updated in the course of an iterative process
ui+1→ = ui→ + �u

i
→ generates a new control domain y∈ (0; S i+1(0; t)), which is di�erent from

the domain y∈ (0; S i(0; t)) where ui+1→ is actually de�ned.
Let us denote R[x; y; t] the original co-ordinate system and introduce a new co-ordinate

system R′[x′; y′; t′] related to R by the transformation Q :R→R′ as follows:

t′= t; x′= x; y′=(y − f)=(S − f) (6)

assuming S(x; t)¿f(x), ∀x; t. We can write for derivatives

@t = @t′ − h′1
S − f @y′ ; @x= @x′ − h′2

S − f @y′ ; @y=
1

S − f @y′

where

h′1 =y
′St′ ; h′2 = (1− y′)fx′ + y′Sx′

We can see that the velocities u′(x′; y′; t′) and v′(x′; y′; t′) are de�ned for all y′ ∈ (0; 1),
i.e. S(x′; t′) is no longer a part of the velocity de�nition. Therefore, we apply the classical
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approach to evaluate the variation in the function S(x′; t′), which is now explicitly incorporated
into the model equations written in the transformed space R′. A similar approach for steady
state shape optimization is described in Reference [6]. Also, in R′ the control variable u′→
can be updated because it is always de�ned in the same domain. Thus, the control problem
may be stated in R′ as a minimization problem for the objective functional J ′ that is simply
(5) reformulated in R′. In fact, both the forward model and the adjoint model could be
formulated and resolved in R′. This is often referred to as a problem stated in �-co-ordinates
[2]. In practice, however, many solvers built for oceanographic applications work in R. In
order to cope with existing solvers the adjoint equations derived in R′ can be re-formulated
back to R using the transformation Q−1, which is inverse to Q. The control, however, can
be correctly exercised only in R′. Therefore, the adjoint variables calculated in R should be
mapped into R′ to serve for control purposes.
The adjoint in R is as follows:

−S∗t − (u(x; S; t)S∗)x − Sxuy(x; S; t)S∗ − F+ rs=0 (7)

u∗x + v
∗
y=0 (8)

−u∗t − uu∗x − vu∗y − p∗x − vyu∗ + vxv∗ + 2SxS∗�(y − S) + ru=0 (9)

−v∗t − uv∗x − vv∗y − p∗y − uxv∗ + uyu∗ − 2S∗�(y − S)=0 (10)

x∈ (0; L); y∈ (f; S); t ∈ (0; T )
where

F=
3∑
i=1

[(∫ S

f
ai;1w∗i dy

)
t

+

(∫ S

f
ai;2w∗i dy

)
x

−
∫ S

f
ai;3w∗i dy

]
; w∗= {p∗; u∗; v∗} (11)

ru=
∑
l

∑
m
(u− ûl;m)�(x − xl)�(y − Ym)

rS =
∑
k
(S − Ŝk)�(x − xk) +

∑
l

∑
m
[(u− ûl;m)uy]Ym

(
Ym − f
S − f − @Ym

@S

)
�(x − xl)

The coe�cients in (11) are those obtained when di�erentiating the governing equations in R′
with respect to S ′ and then transformed back in R using Q−1

a2;1 = 0; a2;2 = − y′uy; a2;3 = − (vy − h2uy)=(S − f)
a3;1 = − y′uy; a3;2 = − y′(uuy + py); a3;3 = − (h0uy − h2py)=(S − f)

a4;1 = − y′vy; a4;2 = − y′uvy; a4;3 = − (h0vy + py)=(S − f)
where h0 = v − h1 − uh2, and h1 =Q−1h′1, h2 =Q−1h′2. The initial (terminal) and boundary
conditions for the adjoint problem are

S∗(x; T )=0; u∗(x; y; T )=0; v∗(x; y; T )=0

u∗(x; f; t)fx − v∗(x; f; t)=0; p∗(x; S; t)=0

The radiation boundary for u∗ must be used both at x=0 and L.
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Let us denote by ∇J ′[r·] the sensitivity on u′→ generated by a certain residual r, which could
be either the rS source term in (7) or the ru source term in (9), or both. The corresponding
sensitivity expression is as follows:

∇J ′[·]= − S(0; t′)[p′∗ + u′u′∗]x′=0 (12)

The sensitivity in (12) is, in fact, a gradient J ′ on u′→ and can be used in a gradient optimiza-
tion algorithm. Studying the sensitivity responses to di�erent sources of information and their
combinations is a core application of sensitivity analysis. For example, it allows for questions
on the solvability of the problem based on incomplete measurements and on optimal location
of the sensors to be clari�ed.

3. NUMERICAL EXPERIMENTS

A trial numerical implementation was made using a �nite-di�erence semi-explicit solution of
the problem with a �xed regular mesh similar to the well-known SOLA algorithm [7]. In
solving the forward model, the �elds u; v; p and S are saved in the memory. These data are
recalled when the TLM or the adjoint problem (7)–(11) is running. In order to underline the
general applicability of the method, we designed a special test case in which the bed function
suddenly changes from being deep to shallow. In reality, this describes a situation near the
‘shelf’ edge. This change happens over a one space discretization step, i.e. fx is always
bounded, and the transformation (6) remains well-posed. A particular bathymetry sketch is
shown in Figure 1. The numerical experiments carried out here are sometimes referred to as
‘identical twin experiments’. Pseudo-residuals ru and rS are formed as a di�erence between
the two forward solutions at the measurement points generated by two distinct control inputs
that may be interpreted as a ‘true value’ and an ‘initial guess’. These pseudo-residuals are
used as driving sources for solving the adjoint problem. The resulting sensitivities, calculated
by (12), are then compared to the error function �u that is the di�erence between these two
causal control inputs. In a perfect case, the mismatch has to be in�nitesimal. We assume that
u→ is uniform through the depth and varies as follows:

u→(0; t)=U0=2(1 + sin(�(3=2 + t=T0))) (13)

where T0 is the wave period, and U0 is the amplitude. This function is a lifted sinusoid
shown in Figure 2 (left), line 1. The number of grid nodes used is Nx=100 and Ny=21, and
the space discretization steps are �x=L=Nx and �y=Z=Ny. For a certain set of parameters
L=2000 m, Z =80 m, T =600 s, U0 = 1 m=s, T0 = 144 s, �t=0:6 s, we obtain results given
in Figure 2 (left). Here, line 2 shows the depth-averaged actual value of u(0; y; t) that is
naturally di�erent from the incident one, being a superposition of the incident wave and the
wave re�ected from the step. The control (13) produces the elevation measurements Ŝ1(t)
shown in line 3, and the velocity measurements at all grid nodes shown in line 4. We will
assume that all these data correspond to a true control input. One can see that the velocity
pro�le at the measurement line x= 3

4L is uniform (all the velocity sensors at the di�erent
depths display the same value up to t≈ 450 s) until the non-uniform velocity �eld generated
near the step has been delivered to the sensors by advective transport. Both �u′ and ∇J ′
are normalized to allow us to compare the shapes. A trivial ‘initial guess’ is chosen at �rst,
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Figure 1. The bathymetry sketch.
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Figure 2. Left: incident input and measurements; right: incident input and sensitivities.

i.e. u→(0; y; t)=0, S→(0; t)=Z . Only one u-velocity sensor located at y′= 1
2 is used in this

example. The results are shown in Figure 2 (right): �u′—in line 1, ∇J ′[ru]—in line 2, the
mismatch �u′ − ∇J ′[ru]—in line 3, the mismatch �u′ − ∇J ′[rS]—in line 4. The sensitivities
at x=0 are taken at y′= 1

2 , but in the present case they are almost uniform through the
depth. After some initial transition period, the mismatch becomes a regular function. This
mismatch is mostly due to a non-linear contribution produced by �u. This is proved by the
fact that if the pseudo-residuals are generated by the TLM, the regular mismatch becomes an
order of magnitude smaller. The remainder may be explained by grid-related numerical e�ects.
For better comprehension we present the patterns of adjoint pressure �eld generated by the
residuals ru and rS , which are shown in Figure 3 (left) and Figure 3 (right) correspondingly.
In case of trivial initial guess, it is p∗ that de�nes ∇J ′ at x=0. When it is driven by ru, p∗
is a discontinuous function of x in the position of �-source. It can be seen that the wave and
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Figure 3. Adjoint pressure �eld p∗ generated by ru (left) and by rS (right).

the anti-wave generated by ru are going in antipodal directions. For a straight channel p∗ is
a perfectly anti-symmetrical function of x. We can clearly observe the di�erence in the wave
celerity for deep and shallow regions, which occur at x=1000m. When driven by rS , adjoint
�elds are continuous, with discontinuity only in @ · =@x. Thus, the adjoint solution based on
rS can be obtained on a coarser grid and requires less computational work.

4. SUMMARY

In this paper, we present the continuous (inconsistent) adjoint model for barotropic Euler
equations including the free surface. The procedure for deriving the adjoint equations is not
trivial. We use a co-ordinate transformation in the vertical to shift the problem into a ‘�xed’
domain and then derive the variation in the surface variable from the Jacobian of the map-
ping. We note that although the adjoint problem may be eventually stated and solved in the
original space, the control can only be exercised in the transformed space. Another important
result indicates that only an incident component of state variables can be controlled. This
follows from the predominant hyperbolic behaviour of the problem. The results of numerical
experiments have partially validated the theory developed in this paper. A detailed derivation
of the adjoint equations, advanced treatment of open boundaries based on the characteristic
representation, as well as a number of numerical experiments including ‘gradient’ test, which
validates the accuracy of the sensitivities obtained, should be found in Reference [8].
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